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In a nutshell

In [1], [2] it was demonstrated that in complex SYK+U model in the limit of small Hubbard
interaction, U ≪ J (here U is the Hubbard interaction constant and J is the SYK model
interaction constant) the pseudogap phase appears. This phase corresponds to a non-trivial
saddle-point in mean-field treatment, where the phases of gaps ∆i = |∆|eiθi are not fixed by
saddle point equation. These phases are soft degrees of freedom and their fluctuations can
destroy off-diagonal long-range order (ODLRO) even in N → ∞ limit. The pseudogap phase
corresponds to the non-synchronized Cooper pairs. We shall show that dynamics of the phase
mode in SYK+U model is identical to the quantum Hamiltonian mean field (HMF) model. Using
this fact, we shall demonstrate that well-known out-of-equilibrium properties of classical HMF
model, like existence of long-living quasi-stationary states (QSS), persist on quantum level
and can cause residual superconductivity in pseudogap phase of SYK+U model. The detailed
discussion can be found in [3]
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Figure 1: In a nutshell

Set-up and model Hamiltonian

The model involves fermions with SYK interaction,
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where Jijkl are assumed to be real independent random variables, drawn from the Gaussian
distribution with the mean ⟨Jijkl⟩ = 0 and variance ⟨J2

ijkl⟩ = J2/(4N)3. It is supplemented with
the attractive Hubbard interaction
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The dimensionless parameter U/J characterizes attraction strength. Introducing two-point
fields,
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and performing decoupling in Cooper channel, the action for SYK+U model becomes
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where Σ̂ and Ĝ are Nambu-like matrix fields and ∆̂i = ∆iσ+ + ∆iσ−. Averaging over disorder
followed by saddle-point ansatz in large-N limit raises after variation the following mean-field
equations for Green functions,
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which are valid for exponentially small ∆. Solution of the analog of gap equation gives the
following value of mean-field gap ∆,

∆ ∝
{
J exp(−J/U), U ≪ J,

U/2, U ≫ J.
(6)

However, the saddle-point equations do not fix the gap phase, i.e. we have ∆i = ∆exp(iθi),
where ∆ can be determined via equations above. Phases of ∆i correspond to soft degrees
of freedom and they can destroy ODLRO even in N → ∞ limit. At this stage the pseudogap
phase appears: we have non-zero value of gap ∆, but the phases of Cooper pairs are not
synchronized, which prevents the superconducting state. The pseudogap effective action be-
comes
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where the phase interaction constant g is computed from the off-diagonal Cooper susceptibility
and m ∝ 1/J is related to the susceptibility of ground state energy EGS to a local chemical
potential µ. Computation of ladder diagrams gives g ∝ J exp(−πJ/U) > 0.
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Figure 2: First contribution to off-diagonal Cooper susceptibility (adapted from [1])

Pseudogap Phase Action

The effective action after Wick rotation raises the famous Hamiltonian mean-field model,
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The classical HMF model exhibits the continuous phase transition between non-synchronized
and synchronized states with order parameter, M =

∑N
j=1 e

iθj/N . The synchronized state
has |M | ̸= 0, whereas the non-synchronized state has |M | = 0. For the quantum HMF
model at low temperatures, we can use generalized Gross-Pitaevskii equation (GGPE) to
study properties of the model,
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where we have introduced rescaling Planck constant χ = 1/
√
mg and also rescaled time,
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Linear stability analysis of small perturbation δρ = δρ(θ, τ ) near incoherent state ρ0 = (2π)−1

tells us that homogeneous solution ρ0 is stable if χ > χc =
√
2. As should be, this result

coincides with gc = (2m)−1 (in terms of g, the homogeneous solution ρ0 is stable for g < gc).
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Figure 3: Left: QSS in SYK+U model with χ = 0.1; Right: equilibrium phase diagram

The stationary spatially inhomogeneous density ρ = ρ(θ) for synchronized state can be ob-
tained via self-consistent solving of Mathieu equation. This procedure shows that there is a
tower of phase condensates, which characterized by Mathieu functions with different number
of nodes n. For the classical HMF model, it was show that in N → ∞ the quasi-stationary
states with large lifetime appear and prevents thermalization. In case of quantum HMF model,
QSS still alive for small enough χ. Existing of such QSS on quantum level means that finger-
prints of superconductivity persist in pseudogap phase, too. In terms of Cooper pair phases,
these QSS correspond to partially synchronized states.
Summarizing the mapping of out-of-equilibrium phenomena in classical HMF model onto the
pseudogap phase in SYK+U model, we propose:
Tower of condensates: stationary solutions of GGPE can be found by considering the cor-
responding Mathieu equation,

−χ2

2

∂2Ψ

∂θ2
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assuming that M is a given constant. The higher condensates are represented by Mathieu
functions cen for even n and sen+1 for odd n.
Quantum QSS: for quite small values of χ, in the pseudogap phase of SYK+U model, long-
living QSS exist and they can be captured by the analysis of phases θi quench. We prepare
the initial state with given θi(0) and θ̇i(0) and see how this quench evolves in time, producing
quantum QSS
Out-of-equilibrium phase transitions: in the pseudogap, there is a out-of-equilibrium phase
transition between non-synchronized and partially synchronized state. This transition can be
captured by the Wigner function analysis and it happens with respect to initial conditions
for the Wigner function, which encode initial order parameter value M0 and the energy per
particle E. Varying M0 and E, one can find the critical line, which separates two different
QSS with |MQSS| = 0 and |MQSS| ≠ 0.

References

[1] H. Wang, A. Chudnovskiy, A. Gorsky, and A. Kamenev, “Sachdev-Ye-Kitaev superconductivity: Quantum Kuramoto and gener-
alized Richardson models”, Physical Review Research, vol. 2, no. 3, p. 033 025, 2020. DOI: 10.1103/PhysRevResearch.2.
033025.

[2] A. L. Chudnovskiy and A. Kamenev, “Superconductor-insulator transition in a non-Fermi liquid”, Physical Review Letters, vol. 129,
no. 26, p. 266 601, 2022. DOI: 10.1103/PhysRevLett.129.266601.

[3] A. Alexandrov and A. Gorsky, “On out-of-equilibrium phenomena in pseudogap phase of complex SYK+U model”, 2023. arXiv:
2305.09767 [cond-mat.str-el].


